
16.1 Lecture: Line integrals

Jeremiah Southwick

Spring 2019



Space curves

−1
0

1−1−0.50 0.5 1

0

2

4

6

Recall from Chapter 13 that we have spent some time working with
space curves and vector-valued functions. The picture above is our
old friend the helix. Chapter 16 now returns us to similar topics.



Line integrals
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A line integral is the integral of a function F (x , y , z) along a curve
C . The next few slides are dedicating to investigating what that
means.



Line integrals

If we set things up formally, integrating a function along a curve
would mean we want to pick a place to begin, say t = a, and a
place to end, say t = b, and break the curve up between those
points into many small pieces.
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Line integrals

If we have n small pieces and we call the length of the kth small
piece ∆sk , then we can estimate the integral of F (x , y , z) along
the curve C by choosing a point (xk , yk , zk) on the kth small piece
and multiplying the F (xk , yk , zk) by ∆sk .
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Line integrals

If we add F (xk , yk , zk)∆sk over each small piece, we have an
approximation for the integral.
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Sn =
n∑

k=1

F (xk , yk , zk)∆sk

We define the line integral to be the limit of Sn as n goes to
infinity.
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Line integrals

Definition
If F (x , y , z) is defined on a curve C given parametrically by
~r(t) = f (t)~i + g(t)~j + h(t)~k, a ≤ t ≤ b, then the line integral of F
over C is ∫

C
F (x , y , z)ds = lim

n→∞

n∑
k=1

F (xk , yk , zk)∆sk
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Evaluating line integrals

To determine how to evaluate a line integral, we have to do two
things: First, we must express what it means for the function
F (x , y , z) to be on the curve C .

This is fairly straight-forward, since the curve is given by a
parametrization ~r(t) = f (t)~i + g(t)~j + h(t)~k, so we can plug what
x , y , z are into the function:

F (f (t), g(t), h(t))
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Evaluating line integrals

Second, we must determine what ds is in terms of t. This requires
us to recall the formula for the arclength parameter with basepoint
a:

s(t) =

∫ t

a
‖~v(τ)‖dτ

Thus, by the fundamental theorem of calculus, we have

ds

dt
= ‖~v(t)‖ or ds = ‖~v(t)‖dt.
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Evaluating line integrals

Putting it all together, we can replace∫
C

by

∫ t=b

t=a

we can replace F (x , y , z) by F (f (t), g(t), h(t)), and
ds by ‖~v(t)‖dt. So∫

C
F (x , y , z)ds =

∫ t=b

t=a
F (f (t), g(t), h(t))‖~v(t)‖dt.

Thus to calculate a line integral over a curve C , we must find a
smooth parametrization ~r(t) of C and then use the formula above.
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Example

Example

Integrate F (x , y , z) = x − 3y2 + z over the line C joining (0, 0, 0)
to (1, 1, 1).

We need to parametrize the line described in the problem. That
just means we have to find a way to write the line down as a
vector-valued function of t. In general, we can parametrize the line
segment from P1 to P2 with the vector function

~r(t) = P1(1− t) + P2(t), 0 ≤ t ≤ 1.

In this case, that means C is parametrized by
~r(t) = 〈0, 0, 0, 〉(1− t) + 〈1, 1, 1〉(t) = 〈t, t, t〉, 0 ≤ t ≤ 1.
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Example, cont.

Example

Integrate F (x , y , z) = x − 3y2 + z over the line C joining (0, 0, 0)
to (1, 1, 1).

~r(t) = 〈t, t, t〉, 0 ≤ t ≤ 1

Next we have to calculate ‖~v(t)‖, plug ~r(t) into F (x , y , z), and
calculate the line integral.

‖~v(t)‖ = ‖〈1, 1, 1〉‖ =
√

12 + 12 + 12 =
√

3

F (t, t, t) = t − 3t2 + t = 2t − 3t2
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Thus the line integral is∫
C

(x − 3y2 + z)ds =

∫ t=1

t=0
(2t − 3t2)(

√
3)dt =

√
3

[
t2 − t3

]1
0

= 0



A note of caution

For regular integrals, the fundamental theorem of calculus tells us
that the integral only depends on the endpoints of the integral,
since

∫ t=b
t=a f (t)dt = F (b)− F (a) where F is an antiderivative of f .

However, this is not the case with line integrals. For example, we
could ask this question:

Example

Integrate F (x , y , z) = x − 3y2 + z over the curve consisting of the
line from (0, 0, 0) to (1, 1, 0) and then the line from (1, 1, 0) to
(1, 1, 1).

We will get a different answer than we got for the previous
question.
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Thus∫
C

(x − 3y2 + z)ds =

∫ 1

0
F (t, t, 0)

√
2dt +

∫ 1

0
F (1, 1, t)dt

=
√

2

∫ 1

0
(t−3t2)dt+

∫ 1

0
(1+3−t)dt =

[√
2t2

2
−
√

2t3+
t2

2
−2t

]1
0

= −
√

2/2− 3/2.


