16.1 Lecture: Line integrals

Jeremiah Southwick

Spring 2019

Space curves

Recall from Chapter 13 that we have spent some time working with space curves and vector-valued functions. The picture above is our old friend the helix. Chapter 16 now returns us to similar topics.

Line integrals

A line integral is the integral of a function $F(x, y, z)$ along a curve C. The next few slides are dedicating to investigating what that means.

Line integrals

If we set things up formally, integrating a function along a curve would mean we want to pick a place to begin, say $t=a$, and a place to end, say $t=b$, and break the curve up between those points into many small pieces.

Line integrals

If we have n small pieces and we call the length of the $k^{\text {th }}$ small piece Δs_{k}, then we can estimate the integral of $F(x, y, z)$ along the curve C by choosing a point $\left(x_{k}, y_{k}, z_{k}\right)$ on the $k^{\text {th }}$ small piece and multiplying the $F\left(x_{k}, y_{k}, z_{k}\right)$ by Δs_{k}.

Line integrals

If we add $F\left(x_{k}, y_{k}, z_{k}\right) \Delta s_{k}$ over each small piece, we have an approximation for the integral.

Line integrals

If we add $F\left(x_{k}, y_{k}, z_{k}\right) \Delta s_{k}$ over each small piece, we have an approximation for the integral.

$$
S_{n}=\sum_{k=1}^{n} F\left(x_{k}, y_{k}, z_{k}\right) \Delta s_{k}
$$

Line integrals

If we add $F\left(x_{k}, y_{k}, z_{k}\right) \Delta s_{k}$ over each small piece, we have an approximation for the integral.

$$
S_{n}=\sum_{k=1}^{n} F\left(x_{k}, y_{k}, z_{k}\right) \Delta s_{k}
$$

We define the line integral to be the limit of S_{n} as n goes to infinity.

Line integrals

Definition
If $F(x, y, z)$ is defined on a curve C given parametrically by $\overrightarrow{\mathbf{r}}(t)=f(t) \overrightarrow{\mathbf{i}}+g(t) \overrightarrow{\mathbf{j}}+h(t) \overrightarrow{\mathbf{k}}, a \leq t \leq b$, then the line integral of F over C is

$$
\int_{C} F(x, y, z) d s=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} F\left(x_{k}, y_{k}, z_{k}\right) \Delta s_{k}
$$

Line integrals

Definition
If $F(x, y, z)$ is defined on a curve C given parametrically by $\overrightarrow{\mathbf{r}}(t)=f(t) \overrightarrow{\mathbf{i}}+g(t) \overrightarrow{\mathbf{j}}+h(t) \overrightarrow{\mathbf{k}}, a \leq t \leq b$, then the line integral of F over C is

$$
\int_{C} F(x, y, z) d s=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} F\left(x_{k}, y_{k}, z_{k}\right) \Delta s_{k}
$$

Evaluating line integrals

To determine how to evaluate a line integral, we have to do two things: First, we must express what it means for the function $F(x, y, z)$ to be on the curve C.

Evaluating line integrals

To determine how to evaluate a line integral, we have to do two things: First, we must express what it means for the function $F(x, y, z)$ to be on the curve C.
This is fairly straight-forward, since the curve is given by a parametrization $\overrightarrow{\mathbf{r}}(t)=f(t) \overrightarrow{\mathbf{i}}+g(t) \overrightarrow{\mathbf{j}}+h(t) \overrightarrow{\mathbf{k}}$, so we can plug what x, y, z are into the function:

$$
F(f(t), g(t), h(t))
$$

Evaluating line integrals

Second, we must determine what $d s$ is in terms of t. This requires us to recall the formula for the arclength parameter with basepoint a:

$$
s(t)=\int_{a}^{t}\|\overrightarrow{\mathbf{v}}(\tau)\| d \tau
$$

Evaluating line integrals

Second, we must determine what $d s$ is in terms of t. This requires us to recall the formula for the arclength parameter with basepoint a:

$$
s(t)=\int_{a}^{t}\|\overrightarrow{\mathbf{v}}(\tau)\| d \tau
$$

Thus, by the fundamental theorem of calculus, we have

$$
\frac{d s}{d t}=\|\overrightarrow{\mathbf{v}}(t)\| \text { or } d s=\|\overrightarrow{\mathbf{v}}(t)\| d t
$$

Evaluating line integrals

Putting it all together, we can replace

$$
\int_{C} \text { by } \int_{t=a}^{t=b}
$$

we can replace $F(x, y, z)$ by $F(f(t), g(t), h(t))$, and $d s$ by $\|\vec{v}(t)\| d t$. So

$$
\int_{C} F(x, y, z) d s=\int_{t=a}^{t=b} F(f(t), g(t), h(t))\|\overrightarrow{\mathbf{v}}(t)\| d t
$$

Evaluating line integrals

Putting it all together, we can replace

$$
\int_{C} \text { by } \int_{t=a}^{t=b}
$$

we can replace $F(x, y, z)$ by $F(f(t), g(t), h(t))$, and $d s$ by $\|\vec{v}(t)\| d t$. So

$$
\int_{C} F(x, y, z) d s=\int_{t=a}^{t=b} F(f(t), g(t), h(t))\|\overrightarrow{\mathbf{v}}(t)\| d t
$$

Thus to calculate a line integral over a curve C, we must find a smooth parametrization $\overrightarrow{\mathbf{r}}(t)$ of C and then use the formula above.

Example

Example
 Integrate $F(x, y, z)=x-3 y^{2}+z$ over the line C joining $(0,0,0)$ to $(1,1,1)$.

Example

Example

Integrate $F(x, y, z)=x-3 y^{2}+z$ over the line C joining $(0,0,0)$ to $(1,1,1)$.
We need to parametrize the line described in the problem. That just means we have to find a way to write the line down as a vector-valued function of t. In general, we can parametrize the line segment from P_{1} to P_{2} with the vector function

$$
\overrightarrow{\mathbf{r}}(t)=P_{1}(1-t)+P_{2}(t), \quad 0 \leq t \leq 1 .
$$

Example

Example

Integrate $F(x, y, z)=x-3 y^{2}+z$ over the line C joining $(0,0,0)$ to $(1,1,1)$.
We need to parametrize the line described in the problem. That just means we have to find a way to write the line down as a vector-valued function of t. In general, we can parametrize the line segment from P_{1} to P_{2} with the vector function

$$
\overrightarrow{\mathbf{r}}(t)=P_{1}(1-t)+P_{2}(t), \quad 0 \leq t \leq 1 .
$$

In this case, that means C is parametrized by
$\overrightarrow{\boldsymbol{r}}(t)=\langle 0,0,0\rangle,(1-t)+\langle 1,1,1\rangle(t)=\langle t, t, t\rangle, \quad 0 \leq t \leq 1$.

Example, cont.

Example

Integrate $F(x, y, z)=x-3 y^{2}+z$ over the line C joining $(0,0,0)$ to $(1,1,1)$.

$$
\overrightarrow{\mathbf{r}}(t)=\langle t, t, t\rangle, \quad 0 \leq t \leq 1
$$

Next we have to calculate $\|\overrightarrow{\mathbf{v}}(t)\|$, plug $\overrightarrow{\mathbf{r}}(t)$ into $F(x, y, z)$, and calculate the line integral.

Example, cont.

Example

Integrate $F(x, y, z)=x-3 y^{2}+z$ over the line C joining $(0,0,0)$ to $(1,1,1)$.

$$
\overrightarrow{\mathbf{r}}(t)=\langle t, t, t\rangle, \quad 0 \leq t \leq 1
$$

Next we have to calculate $\|\overrightarrow{\mathbf{v}}(t)\|$, plug $\overrightarrow{\mathbf{r}}(t)$ into $F(x, y, z)$, and calculate the line integral.

$$
\begin{gathered}
\|\overrightarrow{\mathbf{v}}(t)\|=\|\langle 1,1,1\rangle\|=\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3} \\
F(t, t, t)=t-3 t^{2}+t=2 t-3 t^{2}
\end{gathered}
$$

Example, cont.

Example

Integrate $F(x, y, z)=x-3 y^{2}+z$ over the line C joining $(0,0,0)$ to $(1,1,1)$.

$$
\begin{gathered}
\overrightarrow{\mathbf{r}}(t)=\langle t, t, t\rangle, \quad 0 \leq t \leq 1 \\
\|\overrightarrow{\mathbf{v}}(t)\|=\|\langle 1,1,1\rangle\|=\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3}
\end{gathered}
$$

$$
F(t, t, t)=t-3 t^{2}+t=2 t-3 t^{2}
$$

Thus the line integral is
$\int_{C}\left(x-3 y^{2}+z\right) d s=\int_{t=0}^{t=1}\left(2 t-3 t^{2}\right)(\sqrt{3}) d t=\sqrt{3}\left[t^{2}-t^{3}\right]_{0}^{1}=0$

A note of caution

For regular integrals, the fundamental theorem of calculus tells us that the integral only depends on the endpoints of the integral, since $\int_{t=a}^{t=b} f(t) d t=F(b)-F(a)$ where F is an antiderivative of f. However, this is not the case with line integrals. For example, we could ask this question:

Example

Integrate $F(x, y, z)=x-3 y^{2}+z$ over the curve consisting of the line from $(0,0,0)$ to $(1,1,0)$ and then the line from $(1,1,0)$ to $(1,1,1)$.

A note of caution

For regular integrals, the fundamental theorem of calculus tells us that the integral only depends on the endpoints of the integral, since $\int_{t=a}^{t=b} f(t) d t=F(b)-F(a)$ where F is an antiderivative of f. However, this is not the case with line integrals. For example, we could ask this question:

Example

Integrate $F(x, y, z)=x-3 y^{2}+z$ over the curve consisting of the line from $(0,0,0)$ to $(1,1,0)$ and then the line from $(1,1,0)$ to $(1,1,1)$.
We will get a different answer than we got for the previous question.

Example 2

Example

Integrate $F(x, y, z)=x-3 y^{2}+z$ over the curve consisting of the line from $(0,0,0)$ to $(1,1,0)$ and then the line from $(1,1,0)$ to $(1,1,1)$.
The two lines are parametrized as

$$
\overrightarrow{\mathbf{r}}_{1}(t)=\langle 0,0,0\rangle(1-t)+\langle 1,1,0\rangle(t)=\langle t, t, 0\rangle, \quad 0 \leq t \leq 1
$$

and

$$
\overrightarrow{\mathbf{r}}_{2}(t)=\langle 1,1,0\rangle(1-t)+\langle 1,1,1\rangle(t)=\langle 1,1, t\rangle, \quad 0 \leq t \leq 1
$$

We calculate

$$
\left\|\overrightarrow{\mathbf{v}}_{1}(t)\right\|=\sqrt{1+1}=\sqrt{2} \text { and }\left\|\overrightarrow{\mathbf{v}}_{2}(t)\right\|=\sqrt{1}=1
$$

Example 2

Example

Integrate $F(x, y, z)=x-3 y^{2}+z$ over the curve consisting of the line from $(0,0,0)$ to $(1,1,0)$ and then the line from $(1,1,0)$ to $(1,1,1)$.

$$
\begin{gathered}
\overrightarrow{\mathbf{r}}_{1}(t)=\langle 0,0,0\rangle(1-t)+\langle 1,1,0\rangle(t)=\langle t, t, 0\rangle, \quad 0 \leq t \leq 1 \\
\overrightarrow{\mathbf{r}}_{2}(t)=\langle 1,1,0\rangle(1-t)+\langle 1,1,1\rangle(t)=\langle 1,1, t\rangle, \quad 0 \leq t \leq 1 \\
\left\|\overrightarrow{\mathbf{v}}_{1}(t)\right\|=\sqrt{1+1}=\sqrt{2} \text { and }\left\|\overrightarrow{\mathbf{v}}_{2}(t)\right\|=\sqrt{1}=1
\end{gathered}
$$

Thus

$$
\begin{aligned}
& \int_{C}\left(x-3 y^{2}+z\right) d s=\int_{0}^{1} F(t, t, 0) \sqrt{2} d t+\int_{0}^{1} F(1,1, t) d t \\
= & \sqrt{2} \int_{0}^{1}\left(t-3 t^{2}\right) d t+\int_{0}^{1}(1+3-t) d t=\left[\frac{\sqrt{2} t^{2}}{2}-\sqrt{2} t^{3}+\frac{t^{2}}{2}-2 t\right]_{0}^{1} \\
= & -\sqrt{2} / 2-3 / 2 .
\end{aligned}
$$

